Peer Reviewed Articles on Depression Affecting Daily Life

  • Loading metrics

Factors associated with quality of life in patients with depression: A nationwide population-based study

  • Yunji Cho,
  • Joo Kyung Lee,
  • Do-Hoon Kim,
  • Joo-Hyun Park,
  • Moonyoung Choi,
  • Hyun-Jin Kim,
  • Myung-Ji Nam,
  • Kang-U.k. Lee,
  • Kyungdo Han,
  • Yong-Gyu Park

PLOS

10

  • Published: July eleven, 2019
  • https://doi.org/ten.1371/journal.pone.0219455

Abstract

Groundwork

Depression, i of the most plush and common mental disorders, is reported to be associated with lower quality of life (QoL) in several studies. Improved understanding of the associated factors with QoL is necessary to optimize long-term outcomes and reduce inability in patients with depression. Therefore, the aim of this study was to identify factors that are associated with lower QoL amidst patients with depression.

Methods

The study was based on the Korea National Health and Diet Examination Survey, a cross-exclusive health examination, years 2008 to 2014. The final analyzed sample consisted of a total of 1,502 study subjects who had been diagnosed by clinicians as having depression. A multivariate logistic regression model was performed to exam the association between the clinical characteristics (age, sex, demographic and health-related characteristics) and QoL. Analysis of covariance was too used to analyze EQ-5D according to mental health.

Results

Older age, lower level of pedagogy, lower income, worse subjective perception of health, unemployment, obesity and mental health struggles were found to be significantly associated with depression QoL in depressive individuals later adjustment for multiple covariates.

Conclusions

This study has outlined grounding data in identifying patients who are at risk of QoL impairment. Policy makers should straight their interests to these individuals and provide advisable management.

Introduction

As trends in major health problems shift from acute infectious diseases to chronic diseases, the concept of health is moving toward emphasizing not only an increment in life expectancy but as well quality of life (QoL). The private perception of health status is represented by the concept of health-related QoL.[1]

Depression is recognized as one of the virtually costly and common disorders worldwide, and its big economic burden is derived from its high prevalence and substantial functional disabilities entailed in the affliction. [2] Functional harm inevitably leads to deteriorations in QoL, or subjective perception of well-being in social, occupational, or health-related dimensions. [3–6] Several studies take explored and confirmed the association between depression and QoL. Low has been found to contribute to the evolution of several chronic medical diseases, including heart illness and diabetes, resulting in further disability and low QoL. [v–eight] Meta-analyses accept been conducted in examining whether pharmacotherapy and/or psychotherapy are effective in enhancing QoL via improving depressive symptoms, and accept found mixed results. [4] Public concerns surrounding depression accept been growing, regarding its widespread prevalence and substantial touch on on public health. [9, 10]

Thus, in treating depression, the optimal treatment outcome has been recognized equally total remission of depressive symptoms and improvements in psychosocial functioning. Partial remission and remainder depressive symptoms have been associated with impaired quality of life, and subsequently, burden in healthcare and social welfare. [11] QoL was reported to be associated with improved adherence and response to treatment in patients with low. [12, xiii] Wellness-related QoL (HRQoL) has been known to be an independent factor affecting various medical outcomes, such as death or re-admission, and is an of import consideration for health care interventions.[14]

Improving QoL is an essential goal in optimizing long-term outcomes and reducing disabilities in patients with depression. Understanding the demographics and health-related factors of associated individuals provides clinicians and policy makers with a clinical overview, and helps provide a guideline in establishing a long-term management plan for depression. The economic and social burden of depression are reaching substantial size, and past locating which individuals are at higher risk, the limited clinical resources can be allocated with higher efficiency and effectivness.

Therefore the present study aimed to place associated factors with QoL of patients with depression, based on data from the Korea National Health and Nutrition Test Survey (KNHANES) 2008 to 2014. To analyze the contained association betwixt sociodemographic and clinical factors and QoL in patients with depression, nosotros included the post-obit various variables: age, sexual activity, residential area, education, household income, spouse, employment, electric current smoking, drinking, regular do, obesity, metabolic syndrome, subjective perception of health and mental health status.

Materials and methods

Study population and data collection

This study was based on the Korea National Health and Nutrition Examination Survey (KNHANES), a cross-sectional health examination and survey conducted past Ministry of Health and Welfare, Korea Centers for Affliction Control and Prevention, and Segmentation of Health and Nutrition Survey. KNHANES was launched in 1998 in an effort to found a nationwide surveillance organisation that monitors the health and nutritional status of the Korean population. Data are collected year-round and assessed annually through a rolling sampling survey method. The target population is noninstitutionalized Southward Korean citizens sampled post-obit a stratified multi-phase amassed probability design. Every year, 192–200 principal sampling units (PSUs) are drawn randomly from approximately 200,000 geographically-defined PSUs, and 20–23 households are then sampled from each PSU. A wellness examination, health interview, and nutrition survey are then conducted after participants sign informed consent forms.

The data used in the present report were retrieved from the data for the years 2008 to 2014, during which 58,306 individuals aged > i year were sampled (ix,308 in 2008; 10,078 in 2009; 8,473 in 2010; 8,055 in 2011; 7,645 in 2012; seven,580 in 2013; 7,167 in 2014). Those anile less than xix years were excluded, as they were not surveyed with the EQ-5D and EQ-VAS. Depression was defined based on study subjects' self- administered reports of having been diagnosed with depression by clinicians. Afterwards excluding incomplete data, a full of 1,502 report subjects who had been diagnosed with depression were analyzed in the present study.

Assessment of QoL and mental health

Data regarding QoL and mental health were obtained by means of a questionnaire, aided by trained supervisors. Measurement of health-related QoL was based on evaluations established past EuroQol in participants of age ≥ nineteen [fifteen]. EuroQol consists of a health-status descriptive organisation (EQ-5D) and a visual analogue scale (EQ-VAS). EQ-5D is a standardized instrument that comprises of five dimensions: mobility, cocky-care, usual activities, pain/discomfort, and anxiety/low. Each dimension has 3 levels (EQ-5D-3L): no issues, some problems, and extreme problems. Respondents self-report their perceived level of performance in accord with the survey items. Responses for all 5 dimensions are merged into a unmarried alphabetize score using a valuation set developed by the Korean Centers for Disease Control and Prevention [16]. Scores range from −0.171 to ane. A score of 1 indicates no problems in all dimensions, 0 implies death, and negative values describe a health condition worse than decease. The EQ-VAS records respondents' self-rated health on a scale ranging from 0 (worst imaginable wellness state) to 100 (best imaginable health) [fifteen].

Mental wellness was assessed in adults ≥ nineteen years of age based on responses to a self-administered questionnaire. Subjects were questioned about the following items: mental stress, melancholia, suicidal ideation, feel of consulting professionals, and suicide attempts. Affective was assessed by a "aye" or "no" answer to the following question: "Have y'all felt sadness or despair that affects your daily life for more than 2 weeks over the by year?"[17] The feel of consulting professionals was assessed by a "yes" or "no" to the following questions; "Have you visited any healthcare institutions, or received consultation through the Internet, phone, etc. regarding your mental health problems during the past year?" Suicidal ideation was assessed by the question "In the last 12 months, did you think almost committing suicide?" A "yes" or "no" response was also used to determine whether the subjects had suicidal thoughts; if the subject answered "aye," they were asked most their suicide attempts, if any. This indicator is a well-documented predictor of suicide attempts that has been previously used in other surveys of adults [18] and in previous KNHANES studies. In addition, participants reported their level of stress as none, mild, moderate, or severe.

Statistical analyses

Socio-demographic and clinical characteristics are presented as hateful ± standard error (SE) or as % (SE). Correlation analyses were utilized to assess and visualize relation between age/sex and each item of the EQ-5D. Odds ratios (ORs) for the 5 EQ-5D dimensions were calculated for various sample characteristics. A multivariate logistic regression model was used to adjust the clinical characteristics (historic period/sex, demographic, and health-related characteristics) and assess whether statistical significance was sustained. Thus, the inclusion of each alphabetize as an explanatory variable depends on the dependent variable. Variables with p < 0.i in the univariate test were selected every bit candidates for the multivariate model. Finally, assay of covariance (ANCOVA) was performed on the EQ-5D by adjusting a diversity of clinical characteristics, and p-values of less than 0.05 were considered statistically pregnant. Statistical analyses were performed using SAS ix.two software (SAS institute, Inc., Cary, NC).

Results

Tabular array 1 displays the sociodemographic characteristics and health behaviors of the study sample in relation to QoL as expressed in the EQ-5D and EQ-VAS. Both the EQ-5D and EQ-VAS showed lower scores for those aged ≥ seventy than those aged 60–69, indicating lower perceived QoL in older age groups. Sex, place of residence, and smoking did not testify definite statistical correlation in terms of QoL. Drinkers had higher EQ-5D scores and those who regularly exercise had higher EQ-5D and EQ-VAS scores. Higher EQ-5D and EQ-VAS scores were noted in subjects with higher socioeconomic condition. Education level, income, and marital and current employment condition were positively correlated with QoL. Concrete health showed meaning differences with respect to QoL. Patients with worse subjective perception of wellness had lower EQ-5D and EQ-VAS. Subjects with body mass index (BMI) ≥ 25 or fundamental obesity (weight circumference ≥ 90 cm for men and ≥ 85 cm for women) had lower EQ-5D scores. Likewise, patients with comorbidities such as metabolic syndrome, hypertension, diabetes, and hypercholesterolemia showed lower QoL. In terms of mental health, an experience of substantial mental stress, depressive mood, clinical consultation, suicidal ideation, and suicide attempts all led to meaning decreases in EQ-5D and EQ-VAS. Amongst these, depressive mood and suicidal ideation led to difficulties in every dimension of EQ-5D (mobility, self-care, usual activities, pain/discomfort, and anxiety/depression).

In Fig one, the relations between historic period/sex and each dimension of EQ-5D are visualized in bar graphs. While sex showed insignificant associations with the EQ-5D dimensions, older age was correlated with problems in mobility, cocky-care, usual activities, and pain/discomfort. Anxiety/low did not showroom a statistically significant correlation with age.

thumbnail

Fig 1. In accordance with gender and age groups, Proportions for each dimension of EQ-5D are visualized in a bar graph.

All p-values were obtained by the Chi-Square Examination and less than 0.05 except feet/depression category.

https://doi.org/ten.1371/journal.pone.0219455.g001

Tabular array 2 presents ORs for the EQ-5D dimensions, with sociodemographic characteristics as contained variables. Dumb mobility, higher historic period, lower level of didactics, low income, worse subjective perception of health, unemployment, and BMI ≥ 25 were linked to higher ORs. Bug in self-care were found with higher ORs in the oldest age grouping, lowest quartile of income, unemployment, and suicidal ideation. In terms of debilitations in usual activities, ORs showed an increment in higher age groups, lower didactics and income, worse self-perception of health, unemployment, and BMI ≥ 25. Pain/discomfort was linked to higher ORs in older age groups, worse cocky-perception of health, and BMI ≥ 25, and anxiety/low to worse self-perception of health, melancholia, and suicidal ideation.

Table 3 shows the results of the analysis of covariance (ANCOVA) for EQ-5D, which adjusted for various factors examined in Table 1. Model ane controlled for age and sex activity, and model 2 was adjusted for age/sex, sociodemographic factors (education, income, employment), and health-related factors (drinking, regular exercise, subjective perception of health, obesity, and metabolic syndrome). Various dimensions of mental health (stress, melancholia, suicidal ideation, professional consultation, and suicide attempts) showed statistically significant correlations with each EQ-5D detail fifty-fifty after adjustment. This indicates that mental health problems can affect QoL past themselves, contained of other sociodemographic or health-related factors.

Discussion

This KNHANES based study sought to identify take a chance factors that may lead to low QoL in people with low. Among various factors examined, older age, lower level of education, lower income, unemployment, worse subjective perception of wellness, obesity and mental health struggles were associated with QoL impairments in depressive individuals after adjustment for multiple covariates.

Aging has adverse furnishings on QoL, especially for those enduring depression. Low in later life is associated with increased risk of morbidity and mortality, and the depressed elderly are more likely to suffer from cognitive alterations, somatic symptoms, loss of interest, and inclinations to commit suicide [19]. Aging is a process of physical and biological change that inevitably entails numerous medical modifications that span neurological, cardiovascular, endocrine, inflammatory, and musculoskeletal changes. Elderly people may suffer from the multiple health disorders due to the vulnerability for many concrete and mental disturbances.[20] Loneliness, functional disability or pain due to chronic disease, difficulties in vision or hearing and impaired sexual activity can decrease QoL of elderly.[21]

Results from our written report have institute lower socioeconomic status (lower income, lower educational activity level, and unemployment) to exist associated with low QoL. Chronic physical comorbidities and low socioeconomic conditions have been reported to have a negative impact on QoL.[22]. Similar to our findings, association between worse subjective perception and depression QoL was confirmed in other studies also.[23, 24] Obesity was also associated with lower QoL in our study. Several studies take shared similar results in reporting associations between obesity and decreased QoL.[25–28] The majority of published studies betoken that obesity impairs HRQoL, and that college degrees of obesity are associated with greater harm.[27]

Dimensions of mental health (stress, affective, consultation, suicidal ideation, and suicide attempt) were shown to impair QoL. In Table iii, it was confirmed that each of these dimensions retained significance after controlling for age/sexual activity and for socioeconomic and health-related factors. According to the results, mental health seems to accept an independent association with QoL. It has been reported that a significant burden of illness exists in MDD, and this burden increases as low intensifies [29]. Studies have also reported improvements in subjective QoL after handling of depression and amelioration of symptoms [thirty, 31].

In our study, smoking was not associated with QoL. Drinkers and patients who exercise regularly had college QoL, but did not show whatsoever pregnant results after multivariate assay. The association betwixt HRQoL and drinking or smoking were not observed in several other studies as well.[32, 33] Therefore, it can be concluded that the effect of smoking and drinking on QoL of depressed patients is non significant.

The present study is not without limitations. Kickoff, as this written report was based on a cross-sectional research design, it is hard to establish causal relationships. Second, inclusion of melancholia (depression lasting more than two weeks) as a mental wellness-related gene and the anxiety/depression dimension of EQ-5D may human action as a confounder in analyzing information drawn from a pool of depressive individuals. Third, this study did not exclude those who concurrently have other mental disorders, such equally anxiety disorder, personality disorder, and schizophrenia. Further research may be directed towards confirming an association betwixt EQ-5D levels and the severity of depressive symptoms. Other measures more specific to mental health, such as PHQ-9 (Patient Health Questionnaire-ix), may be incorporated into future research. Advantages of this report are its large sample size and credible data source.

In conclusion, older historic period, lower level of pedagogy, lower income, unemployment, worse subjective perception of health, obesity and mental health struggles were associated with QoL impairments in depressive individuals. Patients with low who have risk factors for low QoL should be identified and appropriately managed. This report is meaningful in that information technology provided grounding data for improving the QoL of depressed patients.

References

  1. 1. Crosby RD, Kolotkin RL, Williams GR. Defining clinically meaningful alter in wellness-related quality of life. J Clin Epidemiol. 2003;56(5):395–407. Epub 2003/06/xix. pmid:12812812.
  2. 2. Organisation WH. The Global Burden of Disease: 2004 Update. 2008.
  3. 3. Katschnig H. Quality of life in mental disorders: challenges for research and clinical practice. World Psychiatry. 2006;v(3):139–45. Epub 2006/12/02. pmid:17139340
  4. iv. Hofmann SG, Curtiss J, Carpenter JK, Kind S. Upshot of treatments for low on quality of life: a meta-assay. Cogn Behav Ther. 2017;46(4):265–86. Epub 2017/04/26. pmid:28440699
  5. five. Wells KB, Stewart A, Hays RD, Burnam MA, Rogers Due west, Daniels Grand, et al. The performance and well-being of depressed patients. Results from the Medical Outcomes Study. JAMA. 1989;262(7):914–9. Epub 1989/08/xviii. pmid:2754791.
  6. vi. Kaplan RM. Quality of life: an outcomes perspective. Curvation Phys Med Rehabil. 2002;83(12 Suppl ii):S44–l. Epub 2002/12/11. pmid:12474171.
  7. 7. Beekman AT, Penninx BW, Deeg DJ, de Beurs Due east, Geerling SW, van Tilburg W. The impact of depression on the well-being, disability and use of services in older adults: a longitudinal perspective. Acta Psychiatr Scand. 2002;105(1):20–7. Epub 2002/06/28. pmid:12086221.
  8. 8. Herrman H, Patrick DL, Diehr P, Martin ML, Fleck M, Simon GE, et al. Longitudinal investigation of depression outcomes in chief care in half dozen countries: the LIDO study. Functional status, wellness service use and handling of people with depressive symptoms. Psychol Med. 2002;32(5):889–902. Epub 2002/08/13. pmid:12171383.
  9. nine. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):593–602. Epub 2005/06/09. pmid:15939837.
  10. 10. Solem South, Hagen R, Wang CE, Hjemdal O, Waterloo One thousand, Eisemann M, et al. Metacognitions and Mindful Attention Awareness in Depression: A Comparing Of Currently Depressed, Previously Depressed and Never Depressed Individuals. Clin Psychol Psychother. 2017;24(1):94–102. Epub 2015/10/10. pmid:26450662.
  11. xi. Keller MB. Past, present, and future directions for defining optimal treatment outcome in low: remission and across. JAMA. 2003;289(23):3152–60. Epub 2003/06/19. pmid:12813121.
  12. 12. Pyne JM, Bullock D, Kaplan RM, Smith TL, Gillin JC, Golshan South, et al. Wellness-related quality-of-life measure enhances acute treatment response prediction in depressed inpatients. J Clin Psychiatry. 2001;62(4):261–8. Epub 2001/05/31. pmid:11379840.
  13. thirteen. Fogel J, Fauerbach JA, Ziegelstein RC, Bush-league DE. Quality of life in concrete health domains predicts adherence among myocardial infarction patients even after adjusting for depressive symptoms. J Psychosom Res. 2004;56(one):75–82. Epub 2004/02/28. pmid:14987967.
  14. 14. Dominick KL, Ahern FM, Gilt CH, Heller DA. Relationship of wellness-related quality of life to health care utilization and mortality amid older adults. Aging Clin Exp Res. 2002;fourteen(6):499–508. Epub 2003/04/04. pmid:12674491.
  15. 15. EuroQol G. EuroQol—a new facility for the measurement of health-related quality of life. Health Policy. 1990;16(3):199–208. pmid:10109801.
  16. 16. Lee YK, Nam HS, Chuang LH, Kim KY, Yang HK, Kwon IS, et al. S Korean time trade-off values for EQ-5D wellness states: modeling with observed values for 101 health states. Value Health. 2009;12(8):1187–93. pmid:19659703.
  17. 17. Kim J, Jo I. Age-dependent clan between slumber duration and hypertension in the adult Korean population. Am J Hypertens. 2010;23(12):1286–91. Epub 2010/08/fourteen. pmid:20706198.
  18. 18. Gaynes BN, Due west SL, Ford CA, Frame P, Klein J, Lohr KN, et al. Screening for suicide hazard in adults: a summary of the show for the U.S. Preventive Services Task Force. Ann Intern Med. 2004;140(x):822–35. Epub 2004/05/19. pmid:15148072.
  19. 19. Fiske A, Wetherell JL, Gatz Yard. Depression in older adults. Annu Rev Clin Psychol. 2009;5:363–89. Epub 2009/03/31. pmid:19327033
  20. 20. Khaje-Bishak Y, Payahoo 50, Pourghasem B, Asghari Jafarabadi K. Assessing the quality of life in elderly people and related factors in tabriz, iran. J Caring Sci. 2014;3(four):257–63. Epub 2015/02/27. pmid:25717455
  21. 21. Farzianpour F, Foroushani AR, Badakhshan A, Gholipour M, Roknabadi EH. Quality of Life for Elderly Residents in Nursing Homes. Glob J Health Sci. 2015;8(four):127–35. Epub 2015/eleven/18. pmid:26573052
  22. 22. Tuzun H, Aycan South, Ilhan MN. IMPACT OF COMORBIDITY AND SOCIOECONOMIC STATUS ON QUALITY OF LIFE IN PATIENTS WITH CHRONIC DISEASES WHO Nourish Primary Health CARE CENTRES. Cent Eur J Public Health. 2015;23(3):188–94. Epub 2015/12/01. pmid:26615648.
  23. 23. Trentini C, Wagner G, Chachamovich Eastward, Figueiredo G, da Silva Fifty, Hirakata V, et al. Subjective perception of health in elderly inpatients. Int J Psychol. 2012;47(4):279–86. Epub 2011/11/30. pmid:22124478.
  24. 24. Ingrand I, Paccalin Thou, Liuu Eastward, Gil R, Ingrand P. Positive perception of crumbling is a central predictor of quality-of-life in crumbling people. PLoS One. 2018;13(10):e0204044. Epub 2018/x/04. pmid:30281672
  25. 25. Pimenta FB, Bertrand East, Mograbi DC, Shinohara H, Landeira-Fernandez J. The relationship between obesity and quality of life in Brazilian adults. Front Psychol. 2015;six:966. Epub 2015/08/04. pmid:26236255
  26. 26. Taylor VH, Forhan K, Vigod SN, McIntyre RS, Morrison KM. The impact of obesity on quality of life. Best Pract Res Clin Endocrinol Metab. 2013;27(2):139–46. Epub 2013/06/05. pmid:23731876.
  27. 27. Fontaine KR, Barofsky I. Obesity and wellness-related quality of life. Obes Rev. 2001;ii(three):173–82. Epub 2002/07/18. pmid:12120102.
  28. 28. Kolotkin RL, Meter Thou, Williams GR. Quality of life and obesity. Obes Rev. 2001;2(4):219–29. Epub 2002/07/eighteen. pmid:12119993.
  29. 29. Jia H, Lubetkin EI. Incremental decreases in quality-adjusted life years (QALY) associated with higher levels of depressive symptoms for U.S. Adults aged 65 years and older. Health Qual Life Outcomes. 2017;xv(1):nine. Epub 2017/01/thirteen. pmid:28077154
  30. 30. Jha MK, Minhajuddin A, Thase ME, Jarrett RB. Comeback in self-reported quality of life with cognitive therapy for recurrent major depressive disorder. J Affect Disord. 2014;167:37–43. Epub 2014/08/02. pmid:25082112
  31. 31. IsHak WW, Mirocha J, James D, Tobia G, Vilhauer J, Fakhry H, et al. Quality of life in major depressive disorder before/after multiple steps of treatment and ane-year follow-up. Acta Psychiatr Scand. 2015;131(ane):51–60. Epub 2014/06/24. pmid:24954156
  32. 32. Kimura T, Ogushi Y, Takahashi Grand, Munakata Y, Ishii S. Association of health-related quality of life with health test including organic functions and lifestyles in Japanese employees. Qual Life Res. 2004;thirteen(2):519–29. Epub 2004/04/17. pmid:15085924.
  33. 33. Ortola R, Garcia-Esquinas E, Galan I, Rodriguez-Artalejo F. Patterns of alcohol consumption and health-related quality of life in older adults. Drug Alcohol Depend. 2016;159:166–73. Epub 2016/01/11. pmid:26748410.

mcintyregoofty.blogspot.com

Source: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219455

0 Response to "Peer Reviewed Articles on Depression Affecting Daily Life"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel